只要中序遍历一下二叉搜索树就容易找到,如算法1所示,当然也可以用k计数,一点点减1,直到0为止返回正确的数即可。这个算法的时间复杂度是O(N),空间复杂度是O(N),当树退化为链表时。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def kthLargest1(self, root: TreeNode, k: int) -> int:
self.ans = []
def traversal(node):
if not node:
return
if node.left:
traversal(node.left)
self.ans.append(node.val)
if node.right:
traversal(node.right)
traversal(root)
return self.ans[-k]
def kthLargest2(self, root: TreeNode, k: int) -> int:
def dfs(root):
if not root: return
dfs(root.right)
if self.k == 0: return
self.k -= 1
if self.k == 0: self.res = root.val
dfs(root.left)
self.k = k
dfs(root)
return self.res
PREVIOUSjz053II.0~n-1中缺失的数字
NEXTjz055II.平衡二叉树